Уравнения продольного движения самолета. Линеаризация уравнений продольного движения самолета Расчет траектории самолета по уравнениям движения

Страница 1

Движение самолета как твердого тела состоит из двух движений: движения центра масс и движения вокруг центра масс. Поскольку в каждом из этих движений самолет обладает тремя степенями свободы, то в целом его движение характеризуется шестью степенями свободы. Для задания движения в любой момент времени необходимо задать шесть координат как функций времени.

Для определения положения самолета будем применять следующие системы прямоугольных координат (рис.2.1):

неподвижную систему Ox0y0z0, начало которой совпадает с центром масс самолета, ось Oy0 направлена по вертикали, а оси Ox0 и Oz0 горизонтальны и имеют фиксированное направление по отношению к Земле;

связанную систему Ox1y1z1 с началом в центре масс самолета, оси которой направлены по главным осям инерции самолета: ось Ox1 – по продольной оси, ось Oy1 – в плоскости симметрии, ось Oz1 перпендикулярна к плоскости симметрии;

скоростную систему Oxyz с началом в центре масс самолета, ось Ox которой направлена по вектору скорости V, ось Oy – в плоскости симметрии, ось Oz перпендикулярна к плоскости симметрии;

Положение связанной системы Ox1y1z1 по отношению к неподвижной системе Ox0y0z0 характеризуется углами Эйлера: φ – угол крена, ψ – угол рыскания и J - угол тангажа.

Положение вектора воздушной скорости V относительно связанной системы Ox1y1z1 характеризуется углом атаки α и углом скольжения b.

Нередко вместо инерциальной системы координат выбирается система, связанная с Землей. Положение центра масс летательного аппарата в этой системе координат можно характеризовать высотой полета H, боковым отклонением от заданной траектории полета Z и пройденным расстоянием L.

Рис. 2.1 Системы координат

Рассмотрим плоское движение летательного аппарата, при котором вектор скорости центра масс совпадает с плоскостью симметрии. Самолет в скоростной системе координат представлен на рис.2.2.

Рис. 2.2 Самолет в скоростной системе координат

Уравнения продольного движения центра масс самолета в проекции на оси OXa и OYa запишем в виде

(2.1)

(2.2)

Где m – масса;

V – воздушная скорость самолета;

P – сила тяги двигателя;

a – угол атаки;

q – угол наклона вектора скорости к горизонту;

Xa – сила лобового сопротивления;

Ya – аэродинамическая подъемная сила;

G – сила веса.

Обозначим через Mz и Jz соответственно суммарный момент аэродинамических сил, действующих относительно поперечной оси, проходящей через центр масс, и момент инерции относительно той же оси. Уравнение моментов относительно поперечной оси самолета будет:

(2.3)

Если Мшв и Jв – шарнирный момент и момент инерции руля высоты относительно его оси вращения, Мв – управляющий момент, создаваемый системой управления, то уравнение движения руля высоты будет:

(2.4)

В четырех уравнениях (2.1) – (2.4) неизвестными являются пять величин J, q, a, V и dв.

В качестве недостающего пятого уравнения возьмем кинематическое уравнение, связывающее величины J, q и a (см. рис.2.2).

В случае анализа динамики самолета, совершающего полет со скоростью, значительно меньшей орбитальной, уравнения движения по сравнению с общшм случаем полета летательного аппарата могут быть упрощены, в частности, можно пре­небречь вращением и сферичностью Земли. Кроме этого сделаем еще ряд упрощающих допущений.

только квазистатически, для текущего значения скоростного напора.

При анализе устойчивости и управляемости самолета будем использовать следующие прямоугольные правые системы осей координат.

Нормальная земная система координат OXgYgZg. Эта система осей координат имеет неизменную ориентацию относительно Земли. Начало координат совпадает с центром масс (ЦМ) самолета. Оси 0Xg и 0Zg лежат в горизонтальной плоскости. Их ориентация может быть принята произвольно, в зависимости от целей реша­емой задачи. При решении навигационных задач ось 0Xg часто направляют к Северу параллельно касательной к меридиану, а ось 0Zg направляют на Восток. Для анализа устойчивости и управляемости самолета удобно принять направление ориента­ции оси 0Xg совпадающим по направлению с проекцией вектора скорости на горизонтальную плоскость в начальный момент вре­мени исследования движения. Во всех случаях ось 0Yg направлена вверх по местной вертикали, а ось 0Zg лежит в горизонтальной плоскости и образует вместе с осями OXg и 0Yg правую систему осей координат (рис. 1.1). Плоскость XgOYg называют местной вертикальной плоскостью.

Связанная система координат OXYZ. Начало координат рас­положено в центре масс самолета. Ось ОХ лежит в плоскости симметрии и направлена вдоль линии хорд крыла (либо парал­лельно какому-либо другому, фиксированному относительно само­лета направлению) к носовой части самолета. Ось 0Y лежит в плоскости симметрии самолета и направлена вверх (при гори­зонтальном полете), ось 0Z дополняет систему до правой.

Углом атаки а называется угол между продольной осью самолета и проекцией воздушной скорости на плоскость OXY. Угол положителен, если проекция воздушной скорости самолета на ось 0Y отрицательна.

Углом скольжения р называется угол между воздушной ско­ростью самолета и плоскостью OXY связанной системы коорди­нат. Угол положителен, если проекция воздушной скорости на поперечную ось положительна.

Положение связанной системы осей координат OXYZ относи­тельно нормальной земной системы координат OXeYgZg может быть полностью определено тремя углами: ф, #, у, называемыми углами. Эйлера. Последовательно поворачивая связанную систему

координат на каждый из углов Эйлера, можно прийти к любому угловому положению связанной системы относительно осей нор­мальной системы координат.

При исследовании динамики самолетов используются следу­ющие понятия углов Эйлера.

Угол рыскания г]) - угол между некоторым исходным напра­влением (например, осью 0Xg нормальной системы координат) и проекцией связанной оси самолета на горизонтальную пло­скость. Угол положителен, если ось ОХ совмещается с проекцией продольной оси на горизонтальную плоскость поворотом вокруг оси OYg по часовой стрелке.

Угол тангажа # - угол между продольно# осью самолета ОХ и местной горизонтальной плоскостью OXgZg, Угол положителен, если продольная ось находится выше горизонта.

Угол крена у - угол между местной вертикальной плоскостью, проходящей через ось ОХ у и связанной осью 0Y самолета. Угол положителен, если ось О К самолета совмещается с местной вер­тикальной плоскостью поворотом вокруг оси ОХ по часовой стрелке. Углы Эйлера могут быть получены последовательными поворотами связанных осей относительно нормальных осей. Бу­дем считать, что нормальная и связанная системы координат в начале совмещены. Первый поворот системы связанных осей произведем относительно оси О на угол рыскания г]; (ф совпадает с осью OYgXрис. 1.2)); второй поворот -относительно оси 0ZX на угол Ф (‘& совпадает с осью OZJ и, наконец, третий поворот произведем относительно оси ОХ на угол у (у совпадает с осью ОХ). Проектируя векторы ф, Ф, у, являющиеся составляющими

вектора угловой скорости движения самолета относительно нор­мальной системы координат, на связанные оси, получим уравне­ния связи между углами Эйлера и угловыми скоростями вращения связанных осей:

со* = Y + sin *&;

o)^ = i)COS’&cosY+ ftsiny; (1.1)

со2 = ф cos у - ф cos Ф sin у.

При выводе уравнений движения центра масс самолета необ­ходимо рассматривать векторное уравнение изменения количества движения

-^- + о>xV)=# + G, (1.2)

где ю - вектор скорости вращения связанных с самолетом осей;

R - главный вектор внешних сил, в общем случае аэродинами-

ческих сил и тяги; G - вектор гравитационных сил.

Из уравнения (1.2) получим систему уравнений движения ЦМ самолета в проекциях на связанные оси:

т (гЗ?~ + °hVx ~ °ixVz) = Ry + G!!’ (1 -3)

т iy’dt “Ь У - = Rz + Gz>

где Vx, Vy, Vz - проекции скорости V; Rx, Rz - проекции

результирующих сил (аэродинамических сил и тяги); Gxi Gyy Gz - проекции силы тяжести на связанные оси.

Проекции силы тяжести на связанные оси определяются с ис­пользованием направляющих косинусов (табл. 1.1) и имеют вид:

Gy = - G cos ft cos у; (1.4)

GZ = G cos d sin y.

При полете в атмосфере, неподвижной относительно Земли, проекции скорости полета связаны с углами атаки и скольжения и величиной скорости (V) соотношениями

Vх = V cos a cos р;

Vу = - V sin a cos р;

Связанная

Выражения для проекций результирующих сил Rx, Rin Rz имеют следующий вид:

Rx = - cxqS — f Р cos ([>;

Rty = cyqS p sin (1.6)

где cx, cy, сг - коэффициенты проекций аэродинамических сил на оси связанной системы координат; Р - гяга двигателей (обычно Р = / (У, #)); Фн - угол заклинення двигателя (фя > 0, когда проекция вектора тяги на ось 0Y самолета-положительна). Далее везде будем принимать = 0. Для определения входящей в выражение для скоростного напора q величины плотности р (Н) необходимо интегрировать уравнение для высоты

Vx sin ft+ Vy cos ft cos у - Vz cos ft sin у. (1.7)

Зависимость p (H) может находиться по таблицам стандартной атмосферы либо по приближенной формуле

где для высот полета И с 10 000 м К ж 10~4 . Для получения замкнутой системы уравнений движения самолета в связанных осях уравнения (13) необходимо дополнить кинематическими

соотношениями, которые позволяют определять углы ориентации самолета у, ft, г]1 и могут быть получены из уравнений (1.1):

■ф = Кcos У — sin V):

■fr = «у sin у + cos Vi (1-8)

Y = со* - tg ft (©у cos y - sinY),

а угловые скорости cov, со, coz определяются из уравнений движе­ния самолета относительно ЦМ. Уравнения движения самолета относительно центра масс могут быть получены из закона измене­ния момента количества движения

-^-=MR-ZxK.(1.9)

В этом векторном уравнении приняты следующие обозначения: ->■ ->

К - момент количества движения самолета; MR - главный мо­мент внешних сил, действующих на самолет.

Проекции вектора момента количества движения К на подвиж­ные оси в общем случае записываются в следующем виде:

К t = I х^Х? ху®у I XZ^ZI

К, Iху^х Н[ IУ^У Iyz^zi (1.10)

К7. - IXZ^X Iyz^y Iz®Z*

Уравнения (1.10) могут быть упрощены для наиболее распростра­ненного случая анализа динамики самолета, имеющего плоскость симметрии. В этом случае 1хг = Iyz - 0. Из уравнения (1.9), используя соотношения (1.10), получим систему уравнений дви­жения самолета относительно ЦМ:

h -jf — — hy («4 — ©Ї) + Uy — !*) = MRZ-

Если за сси OXYZ принять главные оси инерции, то 1ху = 0. В связи с этим дальнейший анализ динамики самолета будем производить, используя в качестве осей OXYZ главные оси инер­ции самолета.

Входящие в правые части уравнений (1.11) моменты являются суммой аэродинамических моментов и моментов от тяги двигателя. Аэродинамические моменты записываются в виде

где тХ1 ту, mz - безразмерные коэффициенты аэродинамических моментов.

Коэффициенты аэродинамических сил и моментов в общем случае выражаются в виде функциональных зависимостей от ки­нематических параметров движения и параметров подобия, за­висящих от режима полета:

у, г mXt = F(а, р, а, Р, coXJ coyj со2, бэ, ф, бн, М, Re). (1.12)

Числа М и Re характеризуют исходный режим полета, поэтому при анализе устойчивости или управляемых движений эти парамет­ры могут быть приняты постоянными величинами. В общем случае движения в правой части каждого из уравнений сил и моментов будет содержаться достаточно сложная функция, определяемая, как правило, на основе аппроксимации экспериментальных данных.

Нарис. 1.3 приведены правила знаков для основных пара­метров движения самолета, а также для величин отклонений органов и рычагов управления.

Для малых углов атаки и скольжения обычно используется представление аэродинамических коэффициентов в виде разложе­ний в ряд Тейлора по параметрам движения с сохранением только первых членов этого разложения. Такая математическая модель аэродинамических сил и моментов для малых углов атаки доста­точно хорошо согласуется с летной практикой и экспериментами в аэродинамических трубах. На основании материалов работ по аэродинамике самолетов различного назначения примем следу­ющую форму представления коэффициентов аэродинамических сил и моментов в функции параметров движения и углов отклонения органов управления:

сх ^ схо 4~ сх (°0»

У ^ СУ0 4" с^уа 4" С!/Ф;

сг = cfp + СгН6„;

тх - itixi|5 — f — ■Ь тхха>х-(- тх -f — /л* (І -|- — J — Л2ЛП6,!

о (0.- (0^- р б б„

ту = myfi + ту хо)х + ту Уыу + р + га/бэ + ту бн;

тг = тг (а) + тг zwz /я? ф.

При решении конкретных задач динамики полета общая форма представления аэродинамических сил и моментов может быть упрощена. Для малых углов атаки многие аэродинамические коэффициенты бокового движения являются константами, а про­дольный момент может быть представлен в виде

mz (а) = mzo + т£а,

где mz0 - коэффициент продольного момента при а = 0.

Входящие в выражение (1.13) составляющие, пропорциональ­ные углам аир, обычно находятся из статических испытаний моделей в аэродинамических трубах или расчетом. Для нахожде-

НИЯ производных, twx (у) необходимо проведение

динамических испытаний моделей. Однако в таких испытаниях обычно происходит одновременное изменение угловых скоростей и углов атаки и скольжения, в связи с чем при измерениях и обра­ботке одновременно определяются величины:

СО — СО- ,

тг* = т2г —mz;


0) , R. Юу I в.

mx* = тх + тх sin а; ту* = Шух ту sin а.

СО.. (О.. ft СО-. СО.. ft

ту% = т,/ -|- tiiy cos а; тх% = тху + тх cos а.

В работе показано, что для анализа динамики самолета,

особенно на малых углах атаки, допустимо представление момен-

тов в виде соотношений (1.13), в которых производные mS и т$

приняты равными нулю, а под выражениями т®х, и т. д.

понимаются величины m“j, т™у [см. (1.14)], определяемые в экс­перименте. Покажем, что это допустимо, ограничив рассмотрение задачами анализа полета с малыми углами атаки и скольжения при постоянной скорости полета. Подставив в уравнения (1.3) выра­жения для скоростей Vх, Vy, Vz (1.5) и производя необходимые преобразования, получим

= % COS а + coA. sina — f -^r }